United States Department of Agriculture

Statistical Reporting Service

Statistical Research Division

SRS Staff Report Number AGES 820225



# **Estimating Dry Bean** Acreage in Michigan

Ron Fecso Jeff Geuder Bob Hale Steve Pavlasek ESTIMATING DRY BEAN ACREAGE IN MICHIGAN, by Ron Fecso, Jeff Geuder, Bob Hale, and Steve Pavlasek, Research Division; Statistical Reporting Service; U.S. Department of Agriculture. Staff Report No. AGES820225.

ABSTRACT

The importance of dry beans as an export crop has increased in recent years. One third of all dry beans in the United States and 90 percent of the Nation's navy beans are grown in Michigan. In an effort to obtain more precise area frame estimates of the acreage of dry beans in Michigan, a specialized area sampling frame was constructed in a 16-county area. New techniques were used in a research effort, and three estimates were obtained. The precision of the estimates was considerably better than the direct expansion estimate from the JES. This paper documents the techniques used in frame construction and estimation. It also points out areas where alterations to the survey design can improve the precision of the estimates in subsequent years.

Keywords: Area frame, dry bean estimates, regression estimates, stratification.

 ACKNOWLEDGMENTS The Michigan Dry Bean Project was initiated in November 1980 with the goal of an improved drv bean acreage estimate available for the August 1981 crop report. The success of the project, especially in meeting its tight schedules, must be attributed to the outstanding cooperation exhibited by the various groups involved.

.

Contributions to the project include:

Project initiation - Don Fedewa, Statistician in Charge, Michigan State Statistical Office (SSO).

Fiscal support - The Michigan Bean Commission, the Michigan SSO and the Sampling Frame Development Section.

Management - Don Fedewa, Michigan SSO; Wayne Gardner, Head, Sampling Frame Development Section (SFDS); Robert D. Tortora, Chief, Sampling Frames and Survey Research Branch.

Survey design and Project Leader - Ron Fecso, Mathematical Statistician, SFDS.

Questionnaire, survey instructions and enumeration - Michigan SSO.

Frame construction - Steve Pavlasek, Survey Statistician, SFDS.

Regression estimates and auxiliary data - Jeff Geuder and Ron Fecse, Mathematical Statisticians, SFDS.

Survey summary programming - Bob Hale, Mathematical Statistician, SFDS.

Typing - Phyllis Piper.

## CONTENTS

| SUMMARY iv     |
|----------------|
| INTRODUCTION 1 |
| SURVEY DESIGN  |
| ESTIMATION 6   |
| RESULTS        |
| CONCLUSIONS 12 |
| REFERENCES 14  |
| APPENDICES     |

Page

SUMMARY

A Dry Bean Survey (DBS) was conducted in Michigan in July 1981 to obtain more precise acreage estimates than were available from the June Enumerative Survey (JES). Although a multiple frame survey (using the JES as the area portion) has yielded estimates of acceptable precision, there were some concerns about the area frame portion of the estimate. The area frame used in the JES does not estimate efficiently a specialized crop such as dry beans. Also, the JES is conducted in late May, before much of the dry bean crop is planted in Michigan, so there is an inherent downward bias in the JES estimate.

The area frame used in the DBS was constructed specifically for estimating acreage in a 16 county area around Lake Huron, an area which produced over 90 percent of the dry beans in Michigan. The direct expansion estimate (closed segment approach) from the DBS had a coefficient of variation (C.V.) of 8.21 percent. This compares with a C.V. of 12.99 percent from the 1981 JES. There were 205 segments in the 16 counties in the DBS, compared to 99 in the JES in this area. The gains in precision, were due to the increased sample size and the improved design.

A weighted estimate was obtained from the DBS. This estimate was significantly different from the closed estimate, a fact which further substantiates previous work showing a weighted estimate using total land for the weight is biased.

A regression estimate was also obtained from the DBS. Additional work was involved in assigning an auxiliary variable to the count units. The resulting estimate had only a slightly smaller standard error than the closed estimate because the lack of previous survey data resulted in the choice of some regression coefficients which were far from optimal. Improvements in stratification and the regression estimator are expected to lead to increased precision in subsequent years.

# **Estimating Dry Bean Acreage in Michigan**

Ron Fecso Jeff Geuder Bob Hale Steve Pavlasek

INTRODUCTION

The importance of dry beans as a major export crop of the United States has been enhanced since the industry recently signed a 70 million dollar agreement with Mexico which increases dry bean exports. In the U.S., one-third of all dry beans and 90 percent of the navy beans are grown in Michigan. Within the state, over 90 percent of the dry beans are grown in 16 counties in the "Bay-Thumb" area around Lake Huron (see Figure 1).

The economic impact of this region makes it important to be able to estimate dry bean acreage with a high degree of precision. The Michigan State Statistical Office (SSO) has used a multiple frame survey to estimate dry bean acreage. The June Enumerative Survey (JES), conducted in late May, makes up the area frame. A list frame survey was then conducted in July.

There were some concerns about the estimates from the multiple frame design. First, the timing of the area frame survey is not optimal. In Michigan, much of the dry bean crop is planted after the JES is conducted. Therefore, the estimate made from the survey data is based on planted acres and "intentions" to plant dry beans. Second, the precision of the multiple frame estimate has been decreasing (see Table 1). In 1980, after a major effort to update the list of producers, the precision of both the list frame and area frame estimates decreased considerably. One of the purposes of this project was to obtain a more precise area frame estimate.

The area frame used in the June Enumerative Survey (JES) is stratified by land use. Within each land use stratum, substrata called paper strata are created containing counties with similar agriculture. 1/ In 1980, 85 percent of the JES estimate of dry bean acres was accounted for by the two intensive agriculture strata (11 and 12). Within these strata,

<sup>1</sup>/ For further explanations of paper strata and area frame surveys see references (2) and (5).

| YEAR | : | List H   | rame | NOL           | Area  | Combined |          |   |      |
|------|---|----------|------|---------------|-------|----------|----------|---|------|
|      | : | Estimate | с.v. | :<br>Estimate |       | :        | Estimate | : | с.v. |
| 1976 | : | 568      | 2.1  | ~             | -     |          | 568      |   | 12.1 |
| 1977 | : | 533      | 6.6  | ~             | -     |          | 533      |   | 6.6  |
| 1978 | : | 305      | 4.4  | 225           | 11.25 |          | 530      |   | 5.4  |
| 1979 | : | 287      | 4.6  | 209           | 13.30 |          | 496      |   | 6.2  |
| 1980 | : | 379.5    | 6.6  | 138.5         | 24.30 |          | 518      |   | 7.4  |

Table 1--Michigan Dry Bean Acreage Estimates (000 Acres)

Figure 1--County outline map of Michigan with 16-county area shaded.



| Crop       | : State      | 16 Counties |
|------------|--------------|-------------|
|            | : (1         | ,000 acres) |
| Dry Beans  | 490          | 468         |
| Corn       | : 2500       | 972         |
| Soybeans   | <b>:</b> 970 | 482         |
| Wheat      | : 785        | 408         |
| Oats       | 270          | 113         |
| Sugarbeets | : 88         | 85          |

# Table 2--Harvested acreage estimates for the 16 county area and for the state, 1979.

40 percent of the total estimate came from five paper strata located in the Bay-Thumb area.

The 16 county area is also well suited to other crops (see Table 2). As a result of the high concentration of agriculture, nearly one-third of the 343 JES segments were located in this area.

The SFDS found that by doubling the sample size in each paper stratum in the 16 county area, the CV for the JES dry bean estimate would drop from 13 to about 9.4 percent. Even an optimal allocstion of 200 segments to these paper strata would not reduce the CV below the desired 8 percent level. Therefore the development of a specialized frame was recommended.

SURVEY DESIGN The area frame currently used by the Statistical Reporting Service (SRS) is constructed by delineating large, contiguous blocks of land and classifying them into one of several predetermined land use strata based on percent cultivated. These blocks are subdivided into primary sampling units, called count units. Sampled count units are further subdivided into sampling units, called segments.

> One result of this method of frame construction is that segments within a count unit sometimes vary considerably with respect to agricultural content. In some cases, a segment in an intensive agriculture stratum contains very little cultivated land. In cases like this, sampling error is increased and the acreage estimate made from the frame loses precision. Since a new frame was to be constructed for the Dry Bean Survey (DBS), we had the opportunity to use and evaluate frame construction techniques and stratification procedures which were expected to yield improvements over those used in the operational program.

Construction of<br/>Count UnitsThe technique of most interest involved the construction of<br/>count units before defining strata. The stratifiers were<br/>instructed to draw off count units (on aerial photography)<br/>using a different approach from that used in the operational<br/>program. In contrast to the usual area frame methodology,<br/>strata definitions were not predetermined. All land was sub-<br/>divided into count units such that segments within a count unit<br/>were homogeneous with respect to soil type, amount of cultiva-<br/>tion, etc. The count units could range in size from one<br/>square mile (in which case the count unit was equivalent to the

segment) to ten square miles.

As each count unit was constructed, certain auxiliary information was assigned to be used in stratification. The auxiliary information amounted to estimating (in terms of percentages) how much of the count unit was cultivated and how much was in woods, pasture, houses, water, and waste. The instructions for this process are shown in Appendix B.

Count unit boundaries were transferred to county highway maps and digitized. 2/ A data file was created for each county and edited to verify that count units were between one and ten square miles, and that no count unit numbers were missing or duplicated. The total digitized county area was also compared to the estimated Census area, allowing a two percent variation. The auxiliary information was also edited to ensure that the percentages totaled one hundred and that no count unit had missing data.

#### Stratification The method of constructing count units for the dry bean frame a' owed us to use multivariate clustering procedures to form strata. In addition to the various stratification variables assigned earlier, each count unit was assigned a soil classification code (which is a relative measure of the yield potential of the soil) and a subjective measure of the likelihood of finding dry beans in the count unit. This measure was based on previous years' survey data for segments in the area, climatological data, soil types and county acreage estimates. Cross tabulations of the variables were produced to determine the characteristics which were common to groupings of count units. The groupings were then used to form strata.

We were liberal in the number of strata created so we could evaluate the auxiliary information and its use in stratification and regression estimation. This was justified in that after the first year, strata could easily be collapsed if the data showed that such a design change would be more efficient. The following table describes the strata used in the DBS.

<sup>2/</sup> A digitizer electronically measures the area of a polygon.

|           |                     | Definition  | n                          |
|-----------|---------------------|-------------|----------------------------|
| Stratum : | Percent. Cultivated | : Soil Code | : Possibility of Dry Beans |
| 10        | 85-100              | 4           | 75-100                     |
| 12        | 85-100              | 2-3         | 75-100                     |
| 14        | 45- 84              | 4           | 75-100                     |
| 16        | 45- 84              | 2-3         | 75-100                     |
| 29        | 5- 45               | 2-4         | 75-100                     |
| 30        | 55-100              | 4           | 55- 74                     |
| 32 :      | 55-100              | 2-3         | 55- 74                     |
| 36        | 15- 54              | 2-4         | 45- 74                     |
| 39        | 5- 54               | 1           | 55- 64                     |
| 40        | 55-100              | 3-4         | 25- 44                     |
| 44        | 55-100              | 1-2         | 25- 44                     |
| 48        | 5- 54               | 1-4         | 25- 44                     |
| 50        | 75-100              | 3-4         | 0-24                       |
| 52        | 25- 74              | 3-4         | 5- 24                      |
| 55        | 45-100              | 2           | 0- 24                      |
| 56        | 5- 24               | 3-4         | 5- 24                      |
| 57        | 15- 45              | 2           | 0- 24                      |
| 58        | 5- 49               | 1           | 5- 24                      |
| 59        | 5- 49               | 1           | 5- 24                      |
| 60        | 0- 4                | 1-4         | 0-100                      |

Table 3--Stratum Definitions for the Dry Bean Survey, 1981.

Sample Design

In the analysis of the California area frame (2), it was found that within a paper stratum, the standard error of the direct expansion estimate was approximately equal to the range of the individual sample expansions. 3/ Hence, ranges were estimated and used as an estimate of the standard errors necessary for the optimum allocation procedure. Based on cost estimates, 205 segments were selected with the final sample allocation as shown in Table 4.

Questionnaire Design and Data Collection The questionnaire used in the DBS was similar to that used in the JES (See Appendix A). It was designed to collect data on all varieties of dry beans and selected other crops. No data was collected on livestock or economic items. The questionnaire contained sections for collecting both tract data (inside the segment only) and entire farm data, in order to compute a weighted estimate (described in the next section of this paper).

> Twenty-one enumerators were trained during a one day training school held in Saginaw on July 6. The enumeration period was from July 7 through July 22. Whenever possible, data was

 $<sup>\</sup>underline{3}$ / Underscored numbers in parenthesis refer to literature cited in Reference.

|         | :     | : | Paper  | : | Repli-     | : |    | : |        |
|---------|-------|---|--------|---|------------|---|----|---|--------|
| Stratum | : N   | : | Strata | : | cations    | : | n  | : | N/n    |
| 10      | : 117 | 0 | 3      |   | 14         |   | 42 |   | 27.86  |
| 12      | : 11  | 2 | 2      |   | 2          |   | 4  |   | 28.00  |
| 14      | : 15  | 8 | 2      |   | 2          |   | 4  |   | 39.50  |
| 16      | : 4   | 1 | 2      |   | >          |   | 4  |   | 10.25  |
| 24      | : 4   | 2 | 2      |   | 2          |   | 4  |   | 10.50  |
| 30      | : 64  | 4 | 3      |   | б          |   | 18 |   | 35.78  |
| 32      | : 18  | 3 | 2      |   | 3          |   | 6  |   | 30.50  |
| 36      | : 22  | 1 | 4      |   | 2          |   | 8  |   | 27.63  |
| 39      | : 7   | 2 | 1      |   | 2          |   | 2  |   | 36.00  |
| 40      | : 64  | 1 | 2      |   | 14         |   | 28 |   | 22.89  |
| 44      | : 46  | 8 | 2      |   | 6          |   | 12 |   | 39.00  |
| 48      | : 14  | 5 | 2      |   | 2          |   | 4  |   | 36.25  |
| 50      | : 306 | 9 | 5      |   | 1          |   | 35 |   | 87.69  |
| 52      | : 113 | 9 | 3      |   | / <b>.</b> |   | 12 |   | 94.92  |
| 55      | : 83  | 6 | 2      |   | 3          |   | 6  |   | 139.33 |
| 56      | : 12  | 6 | 1      |   | )          |   | 2  |   | 63.00  |
| 57      | : 31  | 7 | 2      |   | )          |   | 4  |   | 79.25  |
| 58      | 40    | 8 | 2      |   | 1          |   | 4  |   | 102.00 |
| 59      | 37    | 2 | 2      |   | )          |   | 4  |   | 93.00  |
| 60      | : 22  | 4 | 1      |   | 2          |   | 2  |   | 112.00 |

Table 4--Sample allocation for the Dry Bean Survey, 1981

collected by personal interview with farm operators. Data collection by observation was used as a last resort.

The actual enumeration costs for the 205 one square mile segments averaged about \$100 with a total cost breakdown 4/ as follows:

| \$11,238 | Regular Salary       |
|----------|----------------------|
| 722      | Overtime             |
| 4,262    | Fringe Benefits      |
| 3,823    | Mileage (18.5¢/mile) |
| 500      | Payroll Costs        |
| 108      | Telephone            |
| \$20,653 | Total Cost           |
|          |                      |

ESTIMATION

The three estimators normally used in SRS area frame surveys are open, closed, and weighted. In the DBS, only the closed and weighted were used, along with a regression estimator. The open segment estimator was not considered because it has consistently been found to be least efficient for crop

4/ Cost computed by Bob Battaglia, Michigan SSO.

estimates from area frame surveys. There was also a problem with collecting total farm data which may be from outside the 16 county area used in the DBS. The closed, weighted and regression estimators are described below. The formulas for the estimators and the variances are shown in Appendix C.

Closed Segment The closed segment estimator is the simple direct expansion Estimator estimate of the land inside the segment boundaries. Data is collected for every tract of land in the segment, and the estimate for the item in question is the product of the reported data and the expansion factor.

> The closed segment approach is attractive because the estimate is unbiased, the concept is easy to understand, and the computations are not complex.

Weighted Segment In order to compute the weighted segment estimator, we must Estimator collect entire farm data for every farm which is partially or entirely inside the segment boundaries. The reported farm data for the item being estimated is then weighted (or prorated) to the segment level. The weight used in the DBS is the ratio of tract acres (acres inside the segment boundaries) to total farm acres.

> The weighted segment estimator usually has a smaller standard error than does the closed segment estimator. However, the data collection costs are higher due to the need to obtain entire farm data. Also, the weight used in the estimate has been shown to be biased due to a tendency by the respondent to underreport total farm acreage (4).

Regression A regression estimator can often increase precision by using Estimator an auxiliary variable which is correlated with the item being estimated. In most SRS area frame surveys, no such auxiliary variable exists. For the DBS, a special effort was made to assign an auxiliary variable to every sample unit in the population. The variable and the procedure used to assign it are described next.

Auxiliary Variable for the Regression Estimator

For every count unit, (j), in the population we had the following information:

- $C_{jk}$  = assigned estimate of percentage of land area in cultivation in count unit j, county k
- $A_{jk}$  = digitized area (in acres) in count unit j, county k
- $n_{jk}$  = number of segments in count unit j, county k

Working within each county and using various information sources for the county, we assigned a value to each count unit which was an estimate of the percentage, p<sub>jk</sub>, of the cultivated acreage in dry beans. The auxiliary variable assigned to segment i of count unit j was computed as follows:

$$\mathbf{x}_{ijh} = \frac{1}{n_{jk}} \left( \mathbf{A}_{jk} \cdot \mathbf{p}_{jk} \cdot \mathbf{C}_{jk} \right)$$
(1)

The value of  $p_{jk}$  was assigned based on the soil type which predeminated the count unit, the relative amount of dry beans in the county, and previous years' JES data. For example, if a count unit was located in an area with a soil type well suited to dry beans and the county, as a whole, had 35 percent of its cultivated land planted in dry beans the previous year, we would assign a value of  $p_{jk}$  about .35 or .40. If the previous years' survey data showed very large amounts of dry beans in the vicinity, we might increase  $p_{jk}$  to, say, .50. The values of  $p_{jk}$  were, admittedly, very subjective.

In order to remove some of the subjectivity, we adjusted the values of  $p_{jk}$  based on the 1980 county estimates of dry bean acreage made by the Michigan 890. The formula for the adjustment was:

$$\mathbf{x}_{\mathbf{ijk}}^{*} = \mathbf{D}_{\mathbf{k}} \cdot \frac{\mathbf{x}_{\mathbf{ijk}}}{\mathbf{N}_{\mathbf{k}} \quad \mathbf{jk}}$$
(2)

where

| <sup>x</sup> ijk | is<br>ín | the value of expected dry bean acres obtained equation $(1)$ , |
|------------------|----------|----------------------------------------------------------------|
| $D_k$            | is       | the estimated dry bean acreage in county k,                    |
| N.<br>k          | is       | the number of count units in county k,                         |

 $\underset{jk}{\overset{is the number of segments in count unit <math display="inline">j \text{ in } } \underset{county \ k.}{\overset{is the number of segments } }$ 

This value,  $x_{ijk}^*$ , then became the auxiliary variable used in the regression estimator.

In most applications, the regression coefficient, b, is estimated from the results of the sample. However, there are instances when it is necessary to choose the value of b in advance of the survey. In simple random sampling, when b is pre-assigned, the regression estimate x' = x' + b (Y - y') is unbiased. However, when b is estimated from the sample data,

Regression Coefficients the regression estimate has a bias of order 1/n (1). In the DBS, there were less than 5 segments in some paper strata, and, hence, the potential for bias was extreme.

In order to obtain an unbiased regression estimate, we assigned the regression coefficients in advance of the survey. A regression coefficient is an estimate of the slope of the line plotting the reported survey data versus the auxiliary item. Hence, these slopes had to be estimated for each stratum. To estimate the slopes, variances of the item being estimated and the auxiliary variable were needed, as was an estimate of the correlation between the two variables. These estimates were not available from previous survey data. Thus, they had to be subjectively determined using all available information from the frame itself and from stratification materials.

The coefficients were also estimated from the sample data, both for segments in each paper stratum and for all segments in a land use stratum. These coefficients are shown in Appendix D.

State Estimate of Dry Bean Acreage Since the estimates obtained from the DBS pertained only to the 16 county area, they had to be combined with an estimate for all other counties in the state. The 1980 JES sampling frame was altered to obtain appropriate expansion factors for segments outside the 16 county area covered by the Dry Bean frame. An estimate was then obtained for that area. The entire state estimator was then calculated as:

$$\hat{\mathbf{x}} = \mathbf{x}_{d} + \mathbf{x}_{j}$$

where  $x'_{d}$  is the closed estimate from the DBS and  $x'_{d}$  is the closed estimate from the JES in the other counties. Since the two frames were independent the variance was computed as:

 $s^{2}(\hat{x}) = s^{2}(x_{\hat{d}}) + s^{2}(x_{\hat{j}})$ .

- RESULTS The Michigan SSO edited the survey data using the SRS Generalized Edit System. The edited data tape was then sent to the Sampling Frame Development Section to be summarized using the Area Frame Analysis Package (3). The results of the survey are discussed below for each of the three estimates computed.
- <u>Closed Estimate</u> Closed estimates were computed for all varieties (shown in Table 5) in the 16 county area. However, a state estimate was available only for total dry beans, since variety estimates were not made in the JES. As expected, the CV's for the varietal estimates were large for the more rare acreages.

| Vaniaty          | : C1       | osed      | : | We       | ighted |           |
|------------------|------------|-----------|---|----------|--------|-----------|
| variety          | : Estimate | : CV      | : | Estimate | :      | CV        |
|                  | : (acres)  | (percent) |   | (acres)  |        | (percent) |
| Navy             | 427,114    | 10.20     |   | 483,425  |        | 8.31      |
| Dark Kidney      | 8,744      | 44.20     |   | 15,301   |        | 33.38     |
| Light Kidney     | 8,874      | 52.67     |   | 11,728   |        | 32.00     |
| Cranberry        | . 19,370   | 34.00     |   | 23,119   |        | 30.02     |
| Yellow Eye       | 1,713      | 67.45     |   | 1,896    |        | 60.57     |
| Pinto            | 16,385     | 28.70     |   | 29,912   |        | 18.87     |
| Black Turtle     | 122,205    | 15.23     |   | 126,992  |        | 9.87      |
| Other            | 1,750      | 56.63     |   | 12,605   |        | 56.19     |
| All but Navy     | : 184,486  | 11.56     |   | 221,556  |        | 8.61      |
| Total            | 611,600    | 8.21      |   | 704,981  |        | 6.67      |
| JES $\frac{1}{}$ | 16,823     | 52.56     |   |          |        |           |
| State Total      | : 628,423  | 8.11      |   |          |        |           |

| [able | 5Clos | ed and | weigh | nted | est | timates | of d: | ry b | ean a | acrea | ige,  |
|-------|-------|--------|-------|------|-----|---------|-------|------|-------|-------|-------|
|       | by v  | ariety | , for | the  | 16  | county  | area  | and  | for   | the   | state |

 $\frac{1}{1}$  JES estimate from other counties

The DBS estimate of dry bean acreage for the state (628,423 acres) had a coefficient of variation of 8.11 percent. This compares with the JES estimate of 536,012 acres, with a C.V. of 13 percent. The increase of almost 100,000 acres is related to the later survey date, when the crop was almost entirely planted. The gain in precision is due to three factors: increased sample size, more precise stratification, and a different sample design.

Although increased sample size accounts for an initial drop in the CV of the dry bean estimate, post survey analysis shows that the specialty frame outperforms the JES stratification. By reallocating only 31 segments in the dry bean frame (Neyman allocation using post survey variance estimates) the CV can be expected to drop to 6.4 percent, almost 2 percent below the best CV attainable with the JES frame. Note that a reallocation of 31 segments is less than our usual 20 percent rotation. Thus, our first rotation can be used to achieve the optimum allocation. Further, by utilizing the multi-strata research design, strata can be collapsed making an additional 44 segments available for reallocation. The strata collapse is expected to reduce the CV to near 5 percent which, with improvements in the regression estimator or with ratio estimation, show the possibility of a 3 percent CV. <u>Weighted Estimate</u> As mentioned earlier, a weighted estimator using the ratio of tract acres to total farm acres has been shown to be biased. The DBS gave us another chance to compare the direct expansion estimate with a weighted estimate to evaluate the bias. The weighted estimate of 704,981 acres was greater than the closed segment estimate at the 90 percent confidence level.

The potential for bias exists in two places in the weighted estimator used in the DBS. There may be a tendency on the part of the respondent to underreport total acres in farm, as found by Hill and Farrar (4). Also, the questionnaire used in the DBS allowed respondents to account for wasteland in each field in the tract. It did not, however, include a line for waste in entire farm acres of dry beans. This value, then, could be overstated, which would result in an estimate with upward bias.

There was not a weighted estimate available from the JES to combined with that of the DBS to arrive at a state estimate. Therefore, the weighted estimate from the DBS was used only as supplementary information by the Michigan SSO.

Regression Estimate Regression estimates were not available by variety because the auxiliary variable used considered all dry beans regardless of variety. The problems encountered in assigning the values of the regression coefficients were described earlier. Table 6 contains the regression estimates of dry bean acres in the 16 counties for three cases: (1) with the pre-assigned coefficients, (2) with coefficients computed from the sample data within each paper stratum, and (3) with coefficients computed from the sample within each stratum.

The estimate made using preassigned coefficients is unbiased, but the coefficients themselves were assigned using very subjective measures. The two estimates which used coefficients computed from the sample are both subject to bias. However, both are within one standard deviation of the closed estimate.

The small gains in precision from the regression estimates were probably offset by the additional cost involved in assigning the auxiliary variable and the possible biased low estimates of variance resulting from small sample sizes in the strata. However, the use of regression estimates in this survey was more a research effort than an operational procedure. In this light, the results are more encouraging. It is possible that improved estimates of the regression coefficients and more accurate auxiliary data (i.e. more highly correlated with reported acres of dry beans) can be developed for future surveys. It is not unreasonable to expect the regression estimates to be more precise in the future.

| 1.11.1.1.      |   |           |        |            |        |   |           |                                                                 |  |
|----------------|---|-----------|--------|------------|--------|---|-----------|-----------------------------------------------------------------|--|
|                | : | Pre-assig | gned : | Coefficien | nts by | : | Coefficie | ents                                                            |  |
|                | : | Cefficie  | ents : | Paper to   | ntum   | : | by Strat  | um                                                              |  |
|                | : | Estimate  | CV     | Estimate   | CV     | _ | Estimate  | CV                                                              |  |
|                | : | (acres)   | (")    | (aures)    | (光)    |   | (acres)   | $\left( \begin{array}{c} & & \\ & & \\ & & \end{array} \right)$ |  |
| 16 county area | : | 96,454    | 8.24   | 571,~**    | 5.47   |   | 579,995   | 7.60                                                            |  |
| State          | : | (13,277   | 8.14   | 588,440    | 5.52   |   | 596.818   | 7.53                                                            |  |
|                |   |           | -      | -          |        |   |           |                                                                 |  |

Table of Regression estimates and of ficients of variation

#### CONCLUSIONS

The bry Bean Survey was conducted to estimate the planted acreage of dry beans in the major producing area of the state. Using different stratification procedures, it was hoped to obtain an estimate of higher precision than is possible with the lune Enumerative Survey. This was achieved, with the area frame estimate from the DBS labeling a coefficient of variation of 8.21 percent and the area to the estimate from the JES having a C.V. of 13 percent. The sample size of the DBS was "larger" that that of the JES in that there were 205 segments in the 16 counties compared to 99 JEC segments. The dry bean frame added to the precision of the estimate beyond the level caused by additional segments and the effective evel desired (87) in the research effort (the JES stratic cation could not).

The use of a regression estimated resulted in a very slight increase in precision over the closed estimator. However, the regression estimator should be studied again next year, since previous survey data is now available for use in assigning the regression coefficients and improving the auxiliary variable. It is not unreasonable to expect a considerable increase in the precision of this estimate next car.

The following additional conclusions are made from the DBS:

- (1) This year's survey design has twenty strata. This design was a research tool to determine the optimum number of strata and use of auxiliary information. Based on the survey results, we can identify areas where the design can be improved by collapsing and restratifying the ineffective strata.
- (2) The use of auxiliary information was new and effective, although problems with nonhomogeneous count units still existed. The most striking example of the problem was a count unit which contained mostly land along a creek bed. The soil along the creek was not at all suited to dry heans, while the soil further from the creek was suitable.

Based on the amount of "poor" soil, and the other auxiliary data, the count unit was placed in stratum 50 (little dry beans anticipated). The count unit was selected for the sample, and the segment in the count unit fell in the area which had "good" soil and also was planted in dry beans. Because of the low sampling rate in 'Stratum 50, this segment contributed significantly to the estimated variance of dry bean estimate in the region.

In general, count units containing a mixture of land such as this, should be placed into the stratum with the higher ' sampling rate. Specifically, this count unit should have been given a soil rating corresponding to the "good" soil. By following this procedure, we may include segments with little or no acres of dry beans in the strata in which dry beans are anticipated. However, this would increase the variance much less than would the reverse case. This conclusion is, at this point, empirical, and should be studied further.

(4) Because the DBS was designed using replications, we can use a rotation scheme to allow a portion of the sampled segments to remain in the survey from one year to the next. This is a cost-saving procedure (new segments do not have to be defined and photography does not have to be purchased), and it allows us to make year-to-year comparisons on the portion of the sample which overlaps the surveys.

In addition, the segments selected for this year can be used in other ways, much the same as rotated JES segments are used in special surveys. Since the segments are already delineated on aerial photographs, it is very efficient to use them whenever there is a need.

#### REFERENCES (1) Cochran, William G., Sampling Techniques. 3rd. ed. John Wiley and Sons, Inc., 1977.

- (2) Fecso, Ron and Van Johnson, <u>The New California Area Frame</u>: <u>A Statistical Study</u>, U.S. Department of Agriculture, <u>Statistical Reporting Service</u>, No. 22, 1981.
- (3) Focso, Ron, Van Johnson and Jeff Geuder, <u>Using SAS to</u> <u>Evaluate an Area Sampling Frame for Agricultural Surveys</u>, Proceedings of the Sixth Annual SAS Users Group International Conference, 363-368, Orlando, Fl., Feb. 1981.
- (4) Hill, George W., and Martha S. Farrar, <u>Impact of Non-sampling Errors on Weighted Tract Survey Indications</u>, U.S. Department of Agriculture, Statistical Reporting Service, 1977.
- (5) Houseman, Earl, <u>Area Frame Sampling in Agriculture</u>, U.S. Department of Agriculture, Statistical Reporting Service No. 21, 1975.

#### APPENDIX A

#### Michigan Dry Bean Survey Questionnaire



U.S. Department of Agriculture

# JULY 1981 MICHIGAN DRY BEAN ACREAGE Enumerative Survey

| Segment: | STATE | DISTRICT | BEGMENT | TRACT |
|----------|-------|----------|---------|-------|
| Tract:   |       |          |         |       |
| County:  |       |          | 00000   |       |

Response to this survey is voluntary and not required by law. However, cooperation is very important in order to establish actual dry bean acreage planted. Facts about your farm will be kept confidential and only used in combination with similar reports from other producers.

| START TIME | OFFICE USE |
|------------|------------|
|            | 005        |
|            |            |

Form Approved O.M.B. Number 535-0043

1. I need to make sure that we have your (the operator's) name and address complete and correct.

| Name of F<br>Ranch or | <sup>r</sup> arm,<br>Operator: |                                                                 |                              |                   |
|-----------------------|--------------------------------|-----------------------------------------------------------------|------------------------------|-------------------|
| Name of<br>Operator:  |                                |                                                                 | •                            |                   |
|                       | (L881) (Fi                     | rst) (Middle)                                                   |                              |                   |
| Address: .            | (Route or Stre                 | et)                                                             |                              |                   |
|                       | (City) (State                  | (Zip)                                                           | 1                            |                   |
| Telephone             | Number: ( )<br>(Area Code)     |                                                                 |                              |                   |
| is the oper           | ation named above              | individually operated<br>: Partnership or Joint<br>Manager Land | • 1Enter Code                | 845               |
| Are there a dary.     | iny other persons li           | ring in this household w                                        | ho operate a farm inside හිම | red segment boun- |
| 🗆 No - Cor            | ntinue 🗇 Yes-Ente              | Name                                                            | Part ID. go to item 4.)      |                   |

4. Do you operate land inside the red segment boundary under any other name or land arrangement than the one listed above?

D No -Continue D Yes - Assign another tract letter for other arrangement.

### - 2 --SECTION A -- ACREAGES OF FIELDS AND CROPS INSIDE BLUE TRACT BOUNDARY

How many acres are inside this blue tract boundary drawn on the photo . . . . . , Acres

•

Now I would like to ask about each field inside this blue tract boundary and its use in 1981.

| Field Number                          | 1   | 2           | 3                                                                                                               | 4           |
|---------------------------------------|-----|-------------|-----------------------------------------------------------------------------------------------------------------|-------------|
| 1. TOTAL ACRES in Field               |     |             |                                                                                                                 |             |
| 2. Crop or Land Use (Specify)         |     |             |                                                                                                                 |             |
| 3. Woods, Waste, Roads, Ditches, etc. | •   | •           | •                                                                                                               | •           |
| 4. Occupied Farmstead or Dwelling     | 843 | •           | •                                                                                                               | •           |
| 5. Idle Cropland Idle during 1981     | 857 | 857         | 857                                                                                                             | 857         |
| 6. Com                                | 530 | 530         | 530                                                                                                             | 530         |
| 7. Soybeans                           | 600 | 600         | 600                                                                                                             | <b>60</b> 0 |
| 8. Sugar Beets                        | 691 | <b>89</b> 1 | 691                                                                                                             | 691         |
| 9. Irish potatoes                     | 552 | 552         | 552                                                                                                             | 552         |
| Dry Edible Beans                      |     | •           | · .                                                                                                             |             |
| 10. Navy (Pea)                        | 010 | 010         | 010                                                                                                             | 010         |
| 11. Dark Red Kidney                   | 020 | 020         | 020<br>•                                                                                                        | 020         |
| 12. Light Red Kidney                  | 030 | 030         | 0.30                                                                                                            | 030         |
| 13. Cranberry                         | •   | 040         | C40<br>•                                                                                                        | •           |
| 14. Yellow-eye                        | 050 |             | •                                                                                                               | •           |
| 15. Pinto                             | 060 | 080         | 060                                                                                                             | •           |
| 16. Black Turtle                      | 070 | 070         | •                                                                                                               | •           |
| 17. Other (Specify)                   |     | 080         | 060                                                                                                             | 080         |
| Small Grains                          |     |             |                                                                                                                 |             |
| 18. Winter Wheat                      | 540 | 540         | 540                                                                                                             | 540         |
| 19. Rye                               | 547 | 547         | 547                                                                                                             | 547         |
| 20. Oats                              | 533 | 533         | 533                                                                                                             | 533         |
| 21. Barley                            | 536 | 535         | 535                                                                                                             | 535         |
| 22. Alfalfa and Alfalfa mixtures      | 863 | <b>6</b> 63 | 853                                                                                                             | 653         |
| HAY<br>23. OTHER HAY Kind             |     |             |                                                                                                                 |             |
| Acres                                 | 854 | 854 .       | 654                                                                                                             | 654         |
| 24. Other Crops                       |     |             |                                                                                                                 |             |
|                                       |     |             | and the set of the second s |             |

16

| 1. Total Acres in<br>Field       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . <th>Sum of<br/>Woods, etc.<br/>841</th>                                                                                                                                                                    | Sum of<br>Woods, etc.<br>841 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 2. Land Use Name       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                                                                                                                                                                                                                      | Sum of<br>Woods, etc.<br>841 |
| 2. Land Oue warrie       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                                                                                                                                                                                                                    | Woods, etc.                  |
| etc.         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .                                                                                                      |                              |
| Stead         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td></td>                                                                                           |                              |
| 5. Hole Grophand       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       .       600       600       600       .       600       .       600       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                                                                                                                                                                                  |                              |
| Soybeans         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         60       |                              |
| 7. Soybeans       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . <th< td=""><td></td></th<>                                                                                                                                                                                                |                              |
| 8. Sugar Beets         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601            |                              |
| 9. Irish potatoes         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         552         |                              |
| Dry Edible<br>Beans         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020       |                              |
| 10. Navy (Pea)         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020         020            |                              |
| 11. Dark Red Kidney       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020       020<                                                                                                |                              |
| 12. Light Red Kidney         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030         030      |                              |
| 13. Cranberry       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040       040                                                                                                       |                              |
| 14. Yellow-eye         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         050         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070            |                              |
| 15. Pinto         080         080         080         080         080         080         080         080         080         080         080         080         080         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         0       |                              |
| 070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070         070 <td></td> |                              |
| 17. Other         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         080         0       |                              |
| Small Grains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| 18. Winter Wheat 540 540 540 540 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 19. Rye 547 547 547 547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| 20. Osts 533 533 533 533 533 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
| 21. Barley 535 535 535 535 535 535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 22. Alfalfa Hay 653 653 653 653 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |
| 23. Other hay — Kind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
| Other Hay—Acres 654 . 654 . 654 . 654 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| 24. Other Crops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |

# - 3 -SECTION A - ACREAGES OF FIELDS AND CROPS INSIDE BLUE TRACT BOUNDARY (Cont'd)

- ------

-----

What are the total acres you operate under this land arrangement. Include all cropland, woodland, pastureland, wasteland, and rented land.

Acres 900

Considering all land you operate, what are the total acreages of Dry Edible Beans planted: Include land both inside and outside red segment boundary.

#### TOTAL DRY BEAN ACREAGE

| Kind             | Acres Planted<br>(Acres) |
|------------------|--------------------------|
| Navy             | 110                      |
| Dark Red Kidney  | 120                      |
| Light Bed Kidney | 130                      |
| Cranberry        | 140                      |
| Velloweve        | 150                      |
| Pinto            | 160                      |
| Plack Turtle     | 170                      |
|                  | 160                      |
|                  | 190                      |
| Total All Kinds  | L                        |

Refer to face page to check box. Is operation partnership or joint?

🛛 Yes - Continue

□ No - Go to Response Code

Now I would like to identify the other persons in this joint farming operation (excluding landlords) so that dry bean acreages you report are not duplicated.

| Name       | (Lesi)             | (First)            | (Middle)      | Telephone No |       |         |
|------------|--------------------|--------------------|---------------|--------------|-------|---------|
| Address _  | (Rt. or            | Street)            | (City)        | (State)      | (Zip) |         |
| is he a: F | Pariner            | Corporate Me       | mber          | Manager      | Other |         |
| How many   | acres of Dry Bean  | s are in the Joint | l arrangement | •••••        | Acres |         |
| Partnershi | p or Corporation N | lame               |               | ·····        |       | <u></u> |

Response Code (Circle number)

|                                   | ENDING 11ME          | R.C. |
|-----------------------------------|----------------------|------|
| 1 — Completed by operator         |                      | 10   |
| 2 — Completed by other            |                      |      |
| 3 Inaccessible (observed) specify | 4 14 <b>Contract</b> |      |
| 4 — Refusal (observed)            |                      | •    |

- 4 -

#### APPENDIX B

#### STRATIFICATION PROCEDURES FOR THE MICHIGAN DRY BEAN FRAME

#### I. GENERAL:

In the past our area frames have been generalized frames intended to do a fairly good job of estimating major crop and livestock items, but not highly efficient for any particular item.

The objective of a specialized area frame is to maximuze the sampling efficiency for a specific item. For this project, the specific item is dry beans in a 16 county area in Michigan.

To accomplish this objective it will be necessary to achieve a finer stratification by classifying each frame unit according to its probability of containing dry beans and the amount of potential dry bean area. This is somewhat obvious from the amount of cultivated land present. However, the probability of the frame unit containing dry beans will have to be determined by an analytic approach using crop calendars, LANDSAT imagery, field travel, and any ancillary data (such as soil type, field pattern, presence or predominance of competing crops, etc.) that may be available.

#### II. PROJECT INFORMATION:

- 1. State: Michigan
- 2. Area(s): 16 Counties in Bay-Thumb region:

|          | (000) Acres |            | (000) Acres |
|----------|-------------|------------|-------------|
| County   | Dry Beans   | County     | Dry Beans   |
| Huron    | 79          | Isabella   | 15          |
| Tuscola  | 66          | Arenac     | 13          |
| Gratiot  | 59          | Midland    | 12          |
| Saginaw  | 50          | Lapeer     | 10          |
| Bay      | 48          | Ionia      | 10          |
| Sanilax  | 46          | Shiawassee | 8           |
| Eaton    | 20          | Clinton    | 8           |
| Montcalm | 19          | St. Clair  | 5           |

3. Primary Work Unit: County

#### 4. Material: 1. County Statistics

- 2. Crop Calendars
- 3. ASCS Photo Index Sheets
- 4. 1:250,000 LANDSAT Imagery
- 5. Maps and Map Transparencies

5. Requirements: Stratify area of land within a county into homogeneous frame units. The stratification variables (cultivated land, woods, pasture, urban areas, water, etc.) must be evenly distributed throughout the frame unit. Such a distribution of stratification variables will allow a breakdown of the frame unit such that all resulting segments will have approximately the same characteristics as the frame unit.

Using multi-temporal LANDSAT coverage, along with crop calendars, assign the probability of the occurence of dry beans.

#### III. STRATIFICATION GUIDELINES:

- 1. Reliance on physical boundaries must be emphasized; especially important are section lines when bounded by roads or other observable boundaries.
- 2. Each county will have a frame worksheet on which stratification variables will be recorded by frame unit.

#### IV. STRATIFICATION WORK PROCEDURES:

- A. Phase One
  - 1. Obtain the photo index sheets for the county to be worked.
  - 2. Prepare a frame worksheet for the county, filling in all essential information. (Stratifiers name, County Name, County Code, Ranges and Townships boundaries for the county).
  - 3. Delineate homogeneous areas of land containing cultivation (field patterns visible), wood, water or houses on the clean overlay. Use an orange grease pencil. The frame units must have clearly visible boundaries. Where possible, section lines should form the frame unit boundaries. The minimum frame unit size is one section, and the maximum is ten sections. Generally, they should range from 4 8 sections.
  - 4. After the stratification is completed on all PI sheets for the county, identify the frame units on the PI sheets. Start with PI sheet number one and begin numbering the frame units in the upper right hand corner using the standard serpentine procedure; then go to PI sheet 2, etc. The frame unit identification will be a four digit number incorporating the PI sheet number and a three digit frame unit number, thus:

| PI Sheet Number | Frame Unit Identification |
|-----------------|---------------------------|
| 1               | 1001-1999                 |
| 2               | 2001-2999                 |
| 3               | 3001-3999                 |
| 4               | 4001-4999                 |
|                 |                           |

so that 2127 would be frame unit 127 on Pl sheet number 2.

- 5. After the frame units have been identified, list them on the frame worksheet. Classify the frame units as to percentages of land cultivated, woods, urban, miscellaneous (factories, etc.), and water. The total of these items must equal 100 percent. These classification estimates must be accurate, so a grid should be used when possible.
- 6. If in classifying the frame units it becomes evident that a frame unit should be split, divide the unit and assign the new part the next unassigned frame unit identification number. Footnote this frame unit on the worksheet and note what frame unit it was split from. This should make it easier to locate the unit, if we need to look at it at some later date.

#### B. Phase Two

- 1. Obtain the appropriate Landsat scene(s), the county overlay for the Landsat, the overlay showing existing JES segments within the county and a clear overlay. Align the county overlay on the various Landsat scenes so that you feel comfortable in moving the overlay from scene to scene.
- 2. Place the clear overlay over the county overlay, tape them together and copy the stratification from the PI overlay to the Landsat overlay using a red fineline lumacolor.
- 3. The goal of this phase is to evaluate, using Landsat, the basic stratification done from the PI in phase one. Moving the county overlay and frame overlay from scene to scene as necessary, check the classification of the frame units as to percentages cultivated, woods, urban, miscellaneous, and water. Be certain that each frame unit looks as "unique" on the Landsat as it did on the PI. Keeping in mind the difference in dates flown between the PI and Landsat, look for cleared woods or grown over land. Any apparent differences should be checked and if necessary, split or combine frame units. If you can discern pasture or hay, enter a percentage for these on the worksheet.
- 4. If any frame units need to be split based on the Landsat analysis, follow the procedures outlined in step 6 of phase one. Before splitting any frame unit, be sure to look at that unit on the PI. Any changes made to a frame unit based on Landsat <u>must also be made</u> on the PI overlay.
- 5. Using soil data obtained from Michigan, assign a soil code to each frame unit and record it in the soil code box on the worksheet.

#### C. Phase Three

- 1. Assemble all the materials used in phases one and two.
- 2. Review the work for consistency and completeness. Discuss any problems with the appropriate person.
- 3. Review the percentages of cultivated, woods, arban, and water assigned. If you disagree with the classification breakdown, enter reviewer's percentage on the right side of the data boxes on the worksheet using a red pencil.
- 4. The last step of this phase is to enter a dry bean probability on the worksheet for each frame unit. In Feeso's research proposal, he states that "... dry beans are negatively correlated with hay ..." Basically, the dry bean probability could be expressed as a percentage by taking 100 minus the percentages of woods, urban, miscellaneous, water, and hay/pasture within each frame unit.

Before assuming that this basic formula is accurate, however, you should review the multitemporal Landsat coverage, crop calendar and any ancillary data available. Taking all this into consideration, assign a dry bean probability between 0-100.

D. Phase Four

Using the PI, draft the final frame onto the appropriate 1/2" = 1 mile county map, using an orange pencil. Be sure that each frame unit has an identification number entered.

E. Phase Five

Supervisor review final frame for completeness and accuracy.

#### APPENDIX C

#### Closed Estimate

The direct expansion estimate (closed segment approach) is computed as follows:

$$\mathbf{x}' = \sum_{h=1}^{L} \mathbf{x}_{hp}' = \sum_{h=1}^{L} \sum_{p=1}^{p} \frac{hp}{n} \sum_{hp} \sum_{i=1}^{p} \mathbf{x}_{hpi}$$
(1)

The variance of the closed estimate is computed as follows:

$$s_{\mathbf{x}}^{2} = \sum_{h=1}^{L} s_{\mathbf{x}hp}^{2} = \sum_{h=1}^{L} \sum_{p=1}^{p} s_{\mathbf{x}hp}^{2}$$
(2)

where

$$s_{x_{hp}}^{2} = \frac{N_{hp}}{n_{hp}} s_{x}^{2} = \frac{N_{hp}}{n_{hp}} (1 - \frac{n_{hp}}{N_{hp}}) \frac{n_{p}}{i=1} (\frac{x_{hpi} - \bar{x}_{hp}}{n_{hp} - 1})^{2}$$
(3)

and

$$\overline{x}_{hp} = \frac{1}{n_{hp}} \sum_{i=1}^{n_{p}} x_{hpi}$$
(4)

#### Weighted Estimate

In order to compute this estimate, entire farm data was collected for every tract operation. A weighted value of tract dry bean acres for the i<sup>th</sup> segment was computed as follows:

$$x_{i}^{*} = \sum_{j=1}^{J} x_{ij} \left( \frac{ij}{f_{ij}} \right)$$
(5)

where

The estimate, then, is computed using the same form as equation (1), i.e.

$$\mathbf{x}^{\star} = \frac{1}{h=1} \mathbf{x}_{hp}^{\star} = \frac{1}{\sum} \frac{p}{\sum} \frac{N_{hp}}{\frac{n}{hp}} \frac{hp}{\frac{1}{hp}} \mathbf{x}_{hpi}^{\star}$$

The variance is computed in the same manner as in equation (3), substituting the weighted acreage  $(x^*_{hpi})$  in place of the raw acreage  $(x_{hpi})$ .

#### Regression Estimate

In order to compute the regression estimate, auxiliary variables were assigned to every population sampling unit. The variable is defined as "predicted acres of dry beans" and is lenoted by  $y_{hpi}$ . The sum of these in each paper stratum is denoted by:

$$Y_{hp} = \frac{N_p}{i=1} y_{hpi}.$$
 (7)

The regression estimate is then:

$$\mathbf{x}_{R}^{*} = \frac{1}{h_{T}} \left[ \mathbf{x}_{hp}^{*} + \mathbf{b}_{hp}^{*} \left( \mathbf{Y}_{hp}^{*} - \mathbf{v}_{hp}^{*} \right) \right],$$
 (8)

where

The variance of the cogression estimate is computed within paper strata as follows:

$$s_{x_{Rhp}}^{2} = (N_{hp}^{2}) - \frac{N_{hp}}{N_{hp}} (s_{y_{hp}}^{2} - 2b_{hp} s_{yx_{hp}} + b_{hp}^{2} s_{x_{hp}}^{2})$$
(9)

where

s<sup>2</sup><sub>xhp</sub> is defined in equation (3), s<sup>2</sup><sub>yhp</sub> is defined in the same way for the auxiliary variable, and  ${}^{n}_{p} (x_{hni}, y_{hni} - \bar{x}_{hni}, \bar{y}_{hni})^{2}$ 

$$s_{yx_{hp}} = \sum_{i=1}^{p} \frac{(x_{hpi} y_{hpi} - x_{hp} y_{hp})}{n_{p} - 1}$$

The variance of the regression estimate is then:

$$s_{\mathbf{x}}^{2} = \sum_{\mathbf{b}} \sum_{\mathbf{b}} s_{\mathbf{k}}^{2}$$

$$r \qquad h=1 p=1 \qquad x_{Rhp}$$
(10)

#### AFPENDIX D

## Regression Coefficients

The following table shows the regression coefficients for three cases: (1) pre-assigned by stratum, (2) computed from the sample by paper stratum, and (3) computed from the sample by stratum.

| : :     |     |         | : |              | Reg | ression Coefficients |              |
|---------|-----|---------|---|--------------|-----|----------------------|--------------|
|         | :   | Paper   | : |              | ;   | Computed fro         | m Sample     |
| Stratum | : 5 | Stratum | : | Pre-assigned | :   | by paper stratum     | : by stratum |
| 10      |     | 1       |   | .70          |     | .374                 | .550         |
|         |     | 2       |   |              |     | 480                  |              |
|         |     | 3       |   |              |     | 1.271                |              |
|         |     |         |   |              |     |                      |              |
| 12      |     | 1       |   | .90          |     | 7.430                | 8.920        |
|         |     |         |   |              |     | 18.026               |              |
|         |     |         |   | 7.5          |     | (1)                  | 1 571        |
| 14      |     | 1       |   | .75          |     | .664                 | 1.5/1        |
|         |     | 2       |   |              |     | 1.56/                |              |
| 16      |     | 1       |   | .70          |     | . 827                | . 685        |
| 10      |     | 2       |   | •70          |     | 7,529                |              |
|         |     | 2       |   |              |     | 1.545                |              |
| 29      |     | 1       |   | .95          |     | -3.835               | .420         |
|         |     | 2       |   |              |     | .371                 |              |
|         |     | -       |   |              |     |                      |              |
| 30      |     | 1       |   | .35          |     | 1.656                | 1.301        |
|         |     | 2       |   |              |     | 1.601                |              |
|         |     | 3       |   |              |     | .896                 |              |
| 2.0     |     | 1       |   | 70           |     | 1 250                | 1 22/        |
| 32      |     |         |   | .70          |     | T•309                | 1.234        |
|         |     | Z       |   |              |     | •437                 |              |
| 36      |     | 1       |   | .70          |     | 24,987               | .635         |
| 00      |     | 2       |   |              |     | 122.642              |              |
|         |     | 3       |   |              |     | 3.215                |              |
|         |     | 4       |   |              |     | 1.481                |              |
|         |     |         |   |              |     |                      |              |
| 34      |     | 1       |   | 1.20         |     | .756                 | .756         |
| 10      |     | 1       |   | 4.0          |     | 65%                  | 110          |
| 40      |     | 1       |   | •40          |     | 034                  | .119         |
|         |     | Z       |   |              |     | •033                 |              |
| 44      |     | 1       |   | .40          |     | 695                  | -,572        |
|         |     | 2       |   |              |     | 262                  |              |
|         |     | _       |   |              |     |                      |              |
| 48      |     | 1       |   | .40          |     | 4.433                | 2.250        |
|         |     | 2       |   |              |     | -6.221               |              |

| :       |   |         | : Regression Coefficients |   |                    |            |  |
|---------|---|---------|---------------------------|---|--------------------|------------|--|
|         | : | Paper   | •<br>•                    | : | Computed from      | Sample     |  |
| Stratum | : | Stratum | : Pre-assigned            | : | by paper stratum : | by stratum |  |
|         |   |         |                           |   |                    |            |  |
| 50      |   | 1       | .15                       |   | .296               | . 581      |  |
| 50      |   | 2       | ,                         |   | 1.694              |            |  |
|         |   | 3       |                           |   | .358               |            |  |
|         |   | 4       |                           |   | .788               |            |  |
|         |   | 5       |                           |   | .787               |            |  |
| 5.0     |   | 1       | 30                        |   | . ()41             | . 313      |  |
| 52      |   | 1       |                           |   |                    |            |  |
|         |   | 2       |                           |   | -1. (197           |            |  |
|         |   | )<br>L  |                           |   |                    |            |  |
| 55      |   | 1       | . 30                      |   | .047               | 141        |  |
| ))      |   | 2       | • 3.7                     |   | 1.469              |            |  |
|         |   | ~       |                           |   |                    |            |  |
| 56      |   | 1       | .15                       |   | τ, ΟΟΟ             | 0.000      |  |
|         |   |         |                           |   |                    |            |  |
| 57      |   | 1       | .15                       |   | +.000              | .912       |  |
|         |   | 2       |                           |   | . 331              |            |  |
| 5.0     |   | 1       | 15                        |   | $\alpha = 0.00$    | 8 057      |  |
| 58      |   | 1       | .1)                       |   | 4 996              | • 7 7 7    |  |
|         |   | 2       |                           |   | • • • • • • • • •  |            |  |
| 50      |   | 1       | . 35                      |   | (), ()()()         | 0,000      |  |
| 77      |   | 1<br>() | • 2.7                     |   | 0.00               |            |  |
|         |   | -       |                           |   |                    |            |  |
| 6Ŭ      |   | 1       | . 30                      |   | 0,000              | 0.000      |  |